Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739790

RESUMEN

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Asunto(s)
Migración Animal , Aves , Especiación Genética , Animales , Migración Animal/fisiología , Aves/genética , Aves/fisiología , Aves/clasificación , Ecosistema , Altitud , Evolución Biológica
2.
Ecol Lett ; 27(4): e14405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623056

RESUMEN

Local adaptation is commonly cited to explain species distribution, but how fitness varies along continuous geographical gradients is not well understood. Here, we combine thermal biology and life-history theory to demonstrate that Drosophila populations along a 2500 km latitudinal cline are adapted to local conditions. We measured how heat tolerance and viability rate across eight populations varied with temperature in the laboratory and then simulated their expected cumulative Darwinian fitness employing high-resolution temperature data from their eight collection sites. Simulations indicate a trade-off between annual survival and cumulative viability, as both mortality and the recruitment of new flies are predicted to increase in warmer regions. Importantly, populations are locally adapted and exhibit the optimal combination of both traits to maximize fitness where they live. In conclusion, our method is able to reconstruct fitness surfaces employing empirical life-history estimates and reconstructs peaks representing locally adapted populations, allowing us to study geographic adaptation in silico.


Asunto(s)
Adaptación Fisiológica , Drosophila , Animales , Aclimatación , Temperatura , Aptitud Genética
3.
J Med Entomol ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461045

RESUMEN

The transmission and incidence of vector-borne diseases rely on vector distribution and life history traits such as survival, fecundity, and feeding. Since arthropod disease vectors are ectotherms, these vital rates are strongly influenced by temperature. Chagas disease is a neglected tropical disease caused by the protozoan parasite, Trypanosoma cruzi. This parasite is transmitted when the feces of the infected triatomine enter the bloodstream of the host. One of the most important vector-species of this disease in the Southern Cone region of South America is Triatoma infestans. In this study, we evaluated the role of constant and variable environmental temperature on the feeding behavior of T. infestans. Fifth-instar nymphs were acclimatized to 4 thermal treatments comprising 2 temperatures (27 °C and 18 °C) with and without diurnal thermal variability (27 ±â€…5 °C and 18 ±â€…5 °C). Individuals were fed weekly for 7 wk to quantify their feeding. Our results showed lower feeding frequency in nymphs acclimatized to cold temperature compared to those from warmer temperature treatments. However, treatments with thermal variability presented a nonlinear effect on feeding, with an increased feeding rate in the cold, variable treatment and a decreased feeding rate in the warm, variable treatment. Individuals maintained under cold treatments, the variable temperature exhibited a higher feeding rate and the lowest amount of ingested blood among all treatments. Thus, natural diurnal temperature variation cannot be ignored if we are to make more accurate T. cruzi transmission risk predictions now and in the future.

4.
Proc Biol Sci ; 291(2016): 20232462, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38320609

RESUMEN

Global change drivers are imposing novel conditions on Earth's ecosystems at an unprecedented rate. Among them, biological invasions and climate change are of critical concern. It is generally thought that strictly asexual populations will be more susceptible to rapid environmental alterations due to their lack of genetic variability and, thus, of adaptive responses. In this study, we evaluated the persistence of a widely distributed asexual lineage of the alfalfa race of the pea aphid, Acyrthosiphon pisum, along a latitudinal transect of approximately 600 km in central Chile after facing environmental change for a decade. Based on microsatellite markers, we found an almost total replacement of the original aphid superclone by a new variant. Considering the unprecedented warming that this region has experienced in recent years, we experimentally evaluated the reproductive performance of these two A. pisum lineages at different thermal regimes. The new variant exhibits higher rates of population increase at warmer temperatures, and computer simulations employing a representative temperature dataset suggest that it might competitively displace the original superclone. These results support the idea of a superclone turnover mediated by differential reproductive performance under changing temperatures.


Asunto(s)
Áfidos , Pisum sativum , Animales , Áfidos/fisiología , Ecosistema , Chile , Reproducción
5.
Front Behav Neurosci ; 17: 1239157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928446

RESUMEN

Social interaction can improve animal performance through the prevention of stress-related events, the provision of security, and the enhancement of reproductive output and survival. We investigated the effects of prolonged chronic social isolation stress on behavioral, cognitive, and physiological performance in the social, long-lived rodent Octodon degus. Degu pups were separated into two social stress treatments: control (CTRL) and chronically isolated (CI) individuals from post-natal and post-weaning until adulthood. We quantified anxiety-like behavior and cognitive performance with a battery of behavioral tests. Additionally, we measured their basal metabolic rate (BMR) and analyzed the multifractal properties of the oxygen consumption time series using Multifractal Detrended Fluctuation Analysis, a well-known method for assessing the fractal characteristics of biological signals. Our results showed that CI induced a significant increase in anxiety-like behaviors and led to a reduction in social and working memory in male degus. In addition, CI-treated degus reduced the multifractal complexity of BMR compared to CTRL, which implies a decrease in the ability to respond to environmental stressors and, as a result, an unhealthy state. In contrast, we did not observe significant effects of social stress on BMR. Multivariate analyses showed a clear separation of behavior and physiological variables into two clusters, corresponding to CI and CTRL degus. This study provides novel insights into the effects of prolonged chronic social isolation stress on behavior, cognitive performance, and metabolic complexity in this rodent animal model. To the best of our knowledge, it is the first study to integrate cognitive-behavioral performance and multifractal dynamics of a physiological signal in response to prolonged social isolation. These findings highlight the importance of social interactions for the well-being and overall performance of social animals.

6.
Front Aging Neurosci ; 15: 1250342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810621

RESUMEN

Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-ß (Aß) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aß increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aß proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.

7.
Proc Biol Sci ; 290(1998): 20230507, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161321

RESUMEN

Understanding how species adapt to different temperatures is crucial to predict their response to global warming, and thermal performance curves (TPCs) have been employed recurrently to study this topic. Nevertheless, fundamental questions regarding how thermodynamic constraints and evolution interact to shape TPCs in lineages inhabiting different environments remain unanswered. Here, we study Drosophila simulans along a latitudinal gradient spanning 3000 km to test opposing hypotheses based on thermodynamic constrains (hotter-is-better) versus biochemical adaptation (jack-of-all-temperatures) as primary determinants of TPCs variation across populations. We compare thermal responses in metabolic rate and the egg-to-adult survival as descriptors of organismal performance and fitness, respectively, and show that different descriptors of TPCs vary in tandem with mean environmental temperatures, providing strong support to hotter-is-better. Thermodynamic constraints also resulted in a strong negative association between maximum performance and thermal breadth. Lastly, we show that descriptors of TPCs for metabolism and egg-to-adult survival are highly correlated, providing evidence of co-adaptation, and that curves for egg-to-adult survival are systematically narrower and displaced toward lower temperatures. Taken together, our results support the pervasive role of thermodynamics constraining thermal responses in Drosophila populations along a latitudinal gradient, that are only partly compensated by evolutionary adaptation.


Asunto(s)
Aclimatación , Drosophila , Animales , Temperatura , Termodinámica , Drosophila simulans
8.
Artículo en Inglés | MEDLINE | ID: mdl-36746224

RESUMEN

The success of biological invasions ultimately relies on phenotypic traits of the invasive species. Aphids, which include many important pests worldwide, may have been successful invading new environments partly because they can maximize reproductive output by becoming parthenogenetic and losing the sexual phase of their reproductive cycle. However, invasive populations of aphids invading wide ranges can face contrasting environmental conditions and requiring different phenotypic strategies. Besides transitions in their reproductive cycle, it is only partially known which phenotypic traits might be associated to the invasion success of aphid populations in extended novel ranges. Here, we used four genotypes of the pea aphid Acyrthosiphon pisum from two localities in Chile to test for phenotypic specialization that might explain their establishment and spread in habitats exhibiting contrasting environmental conditions. We show that lineages living at a higher latitude with low temperatures show, in addition to facultative sexual reproduction, smaller body sizes, lower metabolic rates and a higher tolerance to the cold than the obligate asexual lineages living in a mild weather, at the expense of fecundity. Conversely, at higher temperatures only asexual lineages were found, which exhibit larger body sizes, higher reproductive outputs and consequently enhanced demographic ability. As a result, in conjunction with the reproductive mode, lineage specialization in physiological and life-history traits could be taken into account as an important strategy for populations of pea aphid to effectively invade extended novel ranges comprising different climatic conditions.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Pisum sativum , Reproducción/fisiología , Fertilidad , Fenotipo
9.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674622

RESUMEN

In Octodon degus, the aging process is not equivalent between sexes and worsens for females. To determine the beginning of detrimental features in females and the ways in which to improve them, we compared adult females (36 months old) and aged females (72 months old) treated with Andrographolide (ANDRO), the primary ingredient in Andrographis paniculata. Our behavioral data demonstrated that age does not affect recognition memory and preference for novel experiences, but ANDRO increases these at both ages. Sociability was also not affected by age; however, social recognition and long-term memory were lower in the aged females than adults but were restored with ANDRO. The synaptic physiology data from brain slices showed that adults have more basal synaptic efficiency than aged degus; however, ANDRO reduced basal activity in adults, while it increased long-term potentiation (LTP). Instead, ANDRO increased the basal synaptic activity and LTP in aged females. Age-dependent changes were also observed in synaptic proteins, where aged females have higher synaptotagmin (SYT) and lower postsynaptic density protein-95 (PSD95) levels than adults. ANDRO increased the N-methyl D-aspartate receptor subtype 2B (NR2B) at both ages and the PSD95 and Homer1 only in the aged. Thus, females exposed to long-term ANDRO administration show improved complex behaviors related to age-detrimental effects, modulating mechanisms of synaptic transmission, and proteins.


Asunto(s)
Diterpenos , Octodon , Animales , Femenino , Octodon/metabolismo , Encéfalo/metabolismo , Diterpenos/farmacología , Diterpenos/metabolismo , Reconocimiento en Psicología
11.
J Exp Biol ; 225(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36420835

RESUMEN

Endothermy, understood as the maintenance of continuous and high body temperatures owing to the combination of metabolic heat production and an insulative cover, is severely challenged in small endotherms inhabiting cold environments. As a response, social clustering combined with nest use (=communal nesting) is a common strategy for heat conservation. To quantify the actual amount of energy that is saved by this strategy, we studied the social marsupial Dromiciops gliroides (monito del monte), an endemic species of the cold forests of southern South America. It is hypothesized that sociability in this marsupial was driven by cold conditions, but evidence supporting this hypothesis is unclear. Here, we used taxidermic models ('mannequins') to experimentally test the energetic benefits of clustering combined with nest use. To do this, we fitted and compared cooling curves of solitary and grouped mannequins, within and outside of a nest, at the typical winter ambient temperatures of their habitat (5°C). We found that the strategy that minimized euthermic cost of maintenance was the combination of nest use and clustering, thus supporting communal nesting as a social adaptation to cope with the cold. Considering the basal metabolic rate of monitos, our estimates suggest that the savings represents almost half of energy consumption per day (in resting conditions). This study shows how simple biophysical models could help to evaluate bioenergetic hypotheses for social behavior in cold-adapted endotherms.


Asunto(s)
Marsupiales , Animales , Marsupiales/fisiología , Calor , Metabolismo Basal , Metabolismo Energético/fisiología , Termogénesis
12.
Physiol Biochem Zool ; 95(3): 239-250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35443149

RESUMEN

AbstractHibernation (i.e., seasonal or multiday torpor) has been described in mammals from five continents and represents an important adaptation for energy economy. However, direct quantifications of energy savings by hibernation are challenging because of the complexities of estimating energy expenditure in the field. Here, we applied quantitative magnetic resonance to determine body fat and body composition in hibernating Dromiciops gliroides (monito del monte). During an experimental period of 31 d in winter, fat was significantly reduced by 5.72±0.45 g, and lean mass was significantly reduced by 2.05±0.14 g. This fat and lean mass consumption is equivalent to a daily energy expenditure of hibernation (DEEH) of 8.89±0.6 kJ d-1, representing 13.4% of basal metabolic rate, with a proportional contribution of fat and lean mass consumption to DEEH of 81% and 18%, respectively. During the deep heterothermic bouts of monitos, body temperature remained 0.41°C ± 0.2°C above ambient temperature, typical of hibernators. Animals shut down metabolism and passively cool down to a critical defended temperature of 5.0°C ± 0.1°C, where they begin thermoregulation in torpor. Using temperature data loggers, we obtained an empirical estimation of minimum thermal conductance of 3.37±0.19 J g-1 h-1 °C-1, which is 107% of the expectation by allometric equations. With this, we parameterized body temperature/ambient temperature time series to calculate torpor parameters and metabolic rates in euthermia and torpor. Whereas the acute metabolic fall in each torpor episode is about 96%, the energy saved by hibernation is 88% (compared with the DEE of active animals), which coincides with values from the literature at similar body mass. Thus, estimating body composition provides a simple method to measure the energy saved by hibernation in mammals.


Asunto(s)
Hibernación , Marsupiales , Letargo , Animales , Composición Corporal , Temperatura Corporal , Metabolismo Energético , Mamíferos , Marsupiales/metabolismo , América del Sur
13.
Proc Biol Sci ; 289(1973): 20220456, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35473385

RESUMEN

Hibernation is a natural state of suspended animation that many mammals experience and has been interpreted as an adaptive strategy for saving energy. However, the actual amount of savings that hibernation represents, and particularly its dependence on body mass (the 'scaling') has not been calculated properly. Here, we estimated the scaling of daily energy expenditure of hibernation (DEEH), covering a range of five orders of magnitude in mass. We found that DEEH scales isometrically with mass, which means that a gram of hibernating bat has a similar metabolism to that of a gram of bear, 20 000 times larger. Given that metabolic rate of active animals scales allometrically, the point where these scaling curves intersect with DEEH represents the mass where energy savings by hibernation are zero. For BMR, these zero savings are attained for a relatively small bear (approx. 75 kg). Calculated on a per cell basis, the cellular metabolic power of hibernation was estimated to be 1.3 × 10-12 ± 2.6 × 10-13 W cell-1, which is lower than the minimum metabolism of isolated mammalian cells. This supports the idea of the existence of a minimum metabolism that permits cells to survive under a combination of cold and hypoxia.


Asunto(s)
Hibernación , Ursidae , Animales , Metabolismo Energético , Mamíferos
14.
Front Integr Neurosci ; 16: 799147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295186

RESUMEN

Octodon degus are a diurnal long-lived social animal widely used to perform longitudinal studies and complex cognitive tasks to test for physiological conditions with similitude in human behavior. They show a complex social organization feasible to be studied under different conditions and ages. Several aspects in degus physiology demonstrated that these animals are susceptible to environmental conditions, such as stress, fear, feeding quality, and isolation. However, the relevance of these factors in life of this animal depends on sex and age. Despite its significance, there are few studies with the intent to characterize neurological parameters that include these two parameters. To determine the basal neurophysiological status, we analyzed basic electrophysiological parameters generated during basal activity or synaptic plasticity in the brain slices of young and aged female and male degus. We studied the hippocampal circuit of animals kept in social ambient in captivity under controlled conditions. The study of basal synaptic activity in young animals (12-24 months old) was similar between sexes, but female degus showed more efficient synaptic transmission than male degus. We found the opposite in aged animals (60-84 months old), where male degus had a more efficient basal transmission and facilitation index than female degus. Furthermore, female and male degus develop significant but not different long-term synaptic plasticity (LTP). However, aged female degus need to recruit twice as many axons to evoke the same postsynaptic activity as male degus and four times more when compared to young female degus. These data suggest that, unlike male degus, the neural status of aged female degus change, showing less number or functional axons available at advanced ages. Our data represent the first approach to incorporate the effect of sex along with age progression in basal neural status.

15.
Ecol Evol ; 12(3): e8645, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35261741

RESUMEN

The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.

16.
Physiol Biochem Zool ; 95(1): 66-81, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34875208

RESUMEN

AbstractDuring the past 60 years, mammalian hibernation (i.e., seasonal torpor) has been interpreted as a physiological adaptation for energy economy. However, direct field comparisons of energy expenditure and torpor use in hibernating and active free-ranging animals are scarce. Here, we followed the complete hibernation cycle of a fat-storing hibernator, the marsupial Dromiciops gliroides, in its natural habitat. Using replicated mesocosms, we experimentally manipulated energy availability and measured torpor use, hibernacula use, and social clustering throughout the entire hibernation season. Also, we measured energy flow using daily food intake, daily energy expenditure (DEE), and basal metabolic rate (BMR) in winter. We hypothesized that when facing chronic caloric restriction (CCR), a hibernator should maximize torpor frequency to compensate for the energetic deficit, compared with individuals fed ad lib. (controls). However, being torpid at low temperatures could increase other burdens (e.g., cost of rewarming, freezing risks). Our results revealed that CCR animals, compared with control animals, did not promote heat conservation strategies (i.e., clustering and hibernacula use). Instead, they gradually increased torpor frequency and reduced DEE and, as a consequence, recovered weight at the end of the season. Also, CCR animals consumed food at a rate of 50.8 kJ d-1, whereas control animals consumed food at a rate of 98.4 kJ d-1. Similarly, the DEE of CCR animals in winter was 47.3±5.64 kJ d-1, which was significantly lower than control animals (DEE=88.0±5.84 kJ d-1). However, BMR and lean mass of CCR and control animals did not vary significantly, suggesting that animals maintained full metabolic capacities. This study shows that the use of torpor can be modulated depending on energy supply, thus optimizing energy budgeting. This plasticity in the use of heterothermy as an energy-saving strategy would explain the occurrence of this marsupial in a broad latitudinal and altitudinal range. Overall, this study suggests that hibernation is a powerful strategy to modulate energy expenditure in mammals from temperate regions.


Asunto(s)
Hibernación , Marsupiales , Letargo , Animales , Metabolismo Basal , Restricción Calórica , Metabolismo Energético , Estaciones del Año
17.
J Anim Ecol ; 91(3): 655-667, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951017

RESUMEN

Here we combined controlled experiments and field surveys to determine if estimates of heat tolerance predict distributional ranges and phenology of different Drosophila species in southern South America. We contrasted thermal death time curves, which consider both magnitude and duration of the challenge to estimate heat tolerance, against the thermal range where populations are viable based on field surveys in an 8-year longitudinal study. We observed a strong correspondence of the physiological limits, the thermal niche for population growth, and the geographic ranges across studied species, which suggests that the thermal biology of different species provides a common currency to understand how species will respond to warming temperatures both at a local level and throughout their distribution range. Our approach represents a novel analytical toolbox to anticipate how natural communities of ectothermic organisms will respond to global warming.


Asunto(s)
Cambio Climático , Drosophila , Animales , Drosophila/fisiología , Calentamiento Global , Estudios Longitudinales , Temperatura
18.
Front Integr Neurosci ; 15: 719076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526882

RESUMEN

Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.

19.
Sci Total Environ ; 801: 149661, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34467908

RESUMEN

In the last decades, livestock species have been severely affected by heat stress because of increasing temperatures, which has threatened animal welfare and decreased production. Based on thermal comfort indices and ensemble climate projections, we analyzed the current and future global spatiotemporal patterns of the heat exposure of cattle in 10 agroclimatic zones. The results show that ~7% of the global cattle population is currently exposed to dangerous heat conditions. This percentage is projected to increase to ~48% before 2100 under a scenario of growing emissions. Tropical agroclimatic zones are expected to face an early increase in the exposure to intense heat before 2050. Heat exposure was negatively correlated with the socioeconomic variables, showing that poor and livestock-dependent tropical countries are the most affected. Our results demonstrate the near-future consequences of heat stress on livestock, emphasizing the limited time available to implement effective abatement strategies.


Asunto(s)
Cambio Climático , Trastornos de Estrés por Calor , Agricultura , Animales , Bovinos , Clima , Trastornos de Estrés por Calor/epidemiología , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Calor
20.
Front Physiol ; 12: 682394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322034

RESUMEN

Hibernation (i.e., multiday torpor) is considered an adaptive strategy of mammals to face seasonal environmental challenges such as food, cold, and/or water shortage. It has been considered functionally different from daily torpor, a physiological strategy to cope with unpredictable environments. However, recent studies have shown large variability in patterns of hibernation and daily torpor ("heterothermic responses"), especially in species from tropical and subtropical regions. The arboreal marsupial "monito del monte" (Dromiciops gliroides) is the last living representative of the order Microbiotheria and is known to express both short torpor episodes and also multiday torpor depending on environmental conditions. However, only limited laboratory experiments have documented these patterns in D. gliroides. Here, we combined laboratory and field experiments to characterize the heterothermic responses in this marsupial at extreme temperatures. We used intraperitoneal data loggers and simultaneous measurement of ambient and body temperatures (T A and T B, respectively) for analyzing variations in the thermal differential, in active and torpid animals. We also explored how this differential was affected by environmental variables (T A, natural photoperiod changes, food availability, and body mass changes), using mixed-effects generalized linear models. Our results suggest that: (1) individuals express short bouts of torpor, independently of T A and even during the reproductive period; (2) seasonal torpor also occurs in D. gliroides, with a maximum bout duration of 5 days and a mean defended T B of 3.6 ± 0.9°C (one individual controlled T B at 0.09°C, at sub-freezing T A); (3) the best model explaining torpor occurrence (Akaike information criteria weight = 0.59) discarded all predictor variables except for photoperiod and a photoperiod by food interaction. Altogether, these results confirm that this marsupial expresses a dynamic form of torpor that progresses from short torpor to hibernation as daylength shortens. These data add to a growing body of evidence characterizing tropical and sub-tropical heterothermy as a form of opportunistic torpor, expressed as daily or seasonal torpor depending on environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...